106 research outputs found

    Toward a Multifaceted Heuristic of Digital Reading to Inform Assessment, Research, Practice, and Policy

    Get PDF
    In this commentary, the author explores the tension between almost 30 years of work that has embraced increasingly complex conceptions of digital reading and recent studies that risk oversimplifying digital reading as a singular entity analogous with reading text on a screen. The author begins by tracing a line of theoretical and empirical work that both informs and complicates our understanding of digital literacy and, more specifically, digital reading. Then, a heuristic is proposed to systematically organize, label, and define a multifaceted set of increasingly complex terms, concepts, and practices that characterize the spectrum of digital reading experiences. Research that informs this heuristic is used to illustrate how more precision in defining digital reading can promote greater clarity across research methods and advance a more systematic study of promising digital reading practices. Finally, the author discusses implications for assessment, research, practice, and policy

    Epstein-Barr virus: clinical and epidemiological revisits and genetic basis of oncogenesis

    Get PDF
    Epstein-Barr virus (EBV) is classified as a member in the order herpesvirales, family herpesviridae, subfamily gammaherpesvirinae and the genus lymphocytovirus. The virus is an exclusively human pathogen and thus also termed as human herpesvirus 4 (HHV4). It was the first oncogenic virus recognized and has been incriminated in the causation of tumors of both lymphatic and epithelial nature. It was reported in some previous studies that 95% of the population worldwide are serologically positive to the virus. Clinically, EBV primary infection is almost silent, persisting as a life-long asymptomatic latent infection in B cells although it may be responsible for a transient clinical syndrome called infectious mononucleosis. Following reactivation of the virus from latency due to immunocompromised status, EBV was found to be associated with several tumors. EBV linked to oncogenesis as detected in lymphoid tumors such as Burkitt's lymphoma (BL), Hodgkin's disease (HD), post-transplant lymphoproliferative disorders (PTLD) and T-cell lymphomas (e.g. Peripheral T-cell lymphomas; PTCL and Anaplastic large cell lymphomas; ALCL). It is also linked to epithelial tumors such as nasopharyngeal carcinoma (NPC), gastric carcinomas and oral hairy leukoplakia (OHL). In vitro, EBV many studies have demonstrated its ability to transform B cells into lymphoblastoid cell lines (LCLs). Despite these malignancies showing different clinical and epidemiological patterns when studied, genetic studies have suggested that these EBV- associated transformations were characterized generally by low level of virus gene expression with only the latent virus proteins (LVPs) upregulated in both tumors and LCLs. In this review, we summarize some clinical and epidemiological features of EBV- associated tumors. We also discuss how EBV latent genes may lead to oncogenesis in the different clinical malignancie

    High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature

    Full text link
    Although the Bock–Aitkin likelihood-based estimation method for factor analysis of dichotomous item response data has important advantages over classical analysis of item tetrachoric correlations, a serious limitation of the method is its reliance on fixed-point Gauss-Hermite (G-H) quadrature in the solution of the likelihood equations and likelihood-ratio tests. When the number of latent dimensions is large, computational considerations require that the number of quadrature points per dimension be few. But with large numbers of items, the dispersion of the likelihood, given the response pattern, becomes so small that the likelihood cannot be accurately evaluated with the sparse fixed points in the latent space. In this paper, we demonstrate that substantial improvement in accuracy can be obtained by adapting the quadrature points to the location and dispersion of the likelihood surfaces corresponding to each distinct pattern in the data. In particular, we show that adaptive G-H quadrature, combined with mean and covariance adjustments at each iteration of an EM algorithm, produces an accurate fast-converging solution with as few as two points per dimension. Evaluations of this method with simulated data are shown to yield accurate recovery of the generating factor loadings for models of upto eight dimensions. Unlike an earlier application of adaptive Gibbs sampling to this problem by Meng and Schilling, the simulations also confirm the validity of the present method in calculating likelihood-ratio chi-square statistics for determining the number of factors required in the model. Finally, we apply the method to a sample of real data from a test of teacher qualifications.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43596/1/11336_2003_Article_1141.pd

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Flavour Chemicals in a Sample of Non-Cigarette Tobacco Products Without Explicit Flavour Names Sold in New York City in 2015

    Get PDF
    Background Youth who experiment with tobacco often start with flavoured products. In New York City (NYC), local law restricts sales of all tobacco products with ‘characterising flavours’ except for ‘tobacco, menthol, mint and wintergreen’. Enforcement is based on packaging: explicit use of a flavour name (eg, ‘strawberry’) or image depicting a flavour (eg, a fruit) is presumptive evidence that a product is flavoured and therefore prohibited. However, a tobacco product may contain significant levels of added flavour chemicals even when the label does not explicitly use a flavour name. Methods Sixteen tobacco products were purchased within NYC in 2015 that did not have explicit flavour names, along with three with flavour names. These were analysed for 92 known flavour chemicals plus triacetin by gas chromatography/mass spectrometry. Results 14 of the 16 products had total determined flavour chemical levels that were higher (\u3e0.3 mg/g) than in previously studied flavour-labelled products and of a chemical profile indicating added flavour chemicals. Conclusions The results suggest that the tobacco industry has responded to sales restrictions by renaming flavoured products to avoid explicitly identifying them as flavoured. While chemical analysis is the most precise means of identifying flavours in tobacco products, federal tobacco laws pre-empt localities from basing regulations on that approach, limiting enforcement options. If the Food and Drug Administration would mandate that all tobacco products must indicate when flavourings are present above a specific level, local jurisdictions could enforce their sales restrictions. A level of 0.1 mg/g for total added flavour chemicals is suggested here as a relevant reference value for regulating added flavour chemicals in tobacco products

    Adapting the NIM

    No full text
    • 

    corecore